272 research outputs found

    Correlation between Subjective Nasal Patency and Intranasal Airflow Distribution

    Get PDF
    Objectives (1) Analyze the relationship between intranasal airflow distribution and subjective nasal patency in healthy and nasal airway obstruction (NAO) cohorts using computational fluid dynamics (CFD). (2) Determine whether intranasal airflow distribution is an important objective measure of airflow sensation that should be considered in future NAO virtual surgery planning. Study Design Cross-sectional. Setting Academic tertiary medical center and academic dental clinic. Subjects and Methods Three-dimensional models of nasal anatomy were created based on computed tomography scans of 15 patients with NAO and 15 healthy subjects and used to run CFD simulations of nasal airflow and mucosal cooling. Subjective nasal patency was quantified with a visual analog scale (VAS) and the Nasal Obstruction Symptom Evaluation (NOSE). Regional distribution of nasal airflow (inferior, middle, and superior) was quantified in coronal cross sections in the narrowest nasal cavity. The Pearson correlation coefficient was used to quantify the correlation between subjective scores and regional airflows. Results Healthy subjects had significantly higher middle airflow than patients with NAO. Subjective nasal patency had no correlation with inferior and superior airflows but a high correlation with middle airflow (|r| = 0.64 and |r| = 0.76 for VAS and NOSE, respectively). Anterior septal deviations tended to shift airflow inferiorly, reducing middle airflow and reducing mucosal cooling in some patients with NAO. Conclusion Reduced middle airflow correlates with the sensation of nasal obstruction, possibly due to a reduction in mucosal cooling in this region. Further research is needed to elucidate the role of intranasal airflow distribution in the sensation of nasal airflow

    Variational Quantum Approximate Spectral Clustering for Binary Clustering Problems

    Full text link
    In quantum machine learning, algorithms with parameterized quantum circuits (PQC) based on a hardware-efficient ansatz (HEA) offer the potential for speed-ups over traditional classical algorithms. While much attention has been devoted to supervised learning tasks, unsupervised learning using PQC remains relatively unexplored. One promising approach within quantum machine learning involves optimizing fewer parameters in PQC than in its classical counterparts, under the assumption that a sub-optimal solution exists within the Hilbert space. In this paper, we introduce the Variational Quantum Approximate Spectral Clustering (VQASC) algorithm - a NISQ-compatible method that requires optimization of fewer parameters than the system size, N, traditionally required in classical problems. We present numerical results from both synthetic and real-world datasets. Furthermore, we propose a descriptor, complemented by numerical analysis, to identify an appropriate ansatz circuit tailored for VQASC.Comment: 21 pages, 6 figure

    An Empirical Evaluation of the Performance of Real-Time Illumination Approaches: Realistic Scenes in Augmented Reality

    Get PDF
    Augmented, Virtual, and Mixed Reality (AR/VR/MR) systems have been developed in general, with many of these applications having accomplished significant results, rendering a virtual object in the appropriate illumination model of the real environment is still under investigation. The entertainment industry has presented an astounding outcome in several media form, albeit the rendering process has mostly been done offline. The physical scene contains the illumination information which can be sampled and then used to render the virtual objects in real-time for realistic scene. In this paper, we evaluate the accuracy of our previous and current developed systems that provide real-time dynamic illumination for coherent interactive augmented reality based on the virtual object’s appearance in association with the real world and related criteria. The system achieves that through three simultaneous aspects. (1) The first is to estimate the incident light angle in the real environment using a live-feed 360∘ camera instrumented on an AR device. (2) The second is to simulate the reflected light using two routes: (a) global cube map construction and (b) local sampling. (3) The third is to define the shading properties for the virtual object to depict the correct lighting assets and suitable shadowing imitation. Finally, the performance efficiency is examined in both routes of the system to reduce the general cost. Also, The results are evaluated through shadow observation and user study
    • …
    corecore